
Supporting Irregular Applications
with Partitioned Global Address
Space Languages: UPC and UPC++

Kathy Yelick
Lawrence Berkeley National Laboratory

With results from the DEGAS and UPC groups

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries
 5-10% of NERSC apps use some kind of PGAS-like model

Shared Memory vs. Message Passing

Shared Memory
• Advantage: Convenience

- Can share data structures
- Just annotate loops
- Closer to serial code

• Disadvantages
- No locality control
- Does not scale
- Race conditions

Message Passing
• Advantage: Scalability

- Locality control
- Communication is all

explicit in code (cost
transparency)

• Disadvantage
- Need to rethink data

structures
- Tedious pack/unpack code
- When to say “receive”

PGAS: Partitioned Global Address Space

• Global address space: thread may directly read/write remote data
•  Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
•  Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce
!

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"

Science Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

Data analysis and simulation

Hello World in UPC
• Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

Example: Monte Carlo Pi Calculation
• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
• Compute ratio:

- # points inside / # points total
-  π = 4*ratio

r =1

Each thread calls �hit� separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

Helper Code for Pi in UPC
• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

Shared vs. Private
Variables!

Private vs. Shared Variables in UPC
• Normal C variables and objects are allocated in the private

memory space for each thread.
• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime, i.e., may
not occur in a function definition, except as static.

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

Pi in UPC: Shared Memory Style
• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

UPC Synchronization
•  UPC has two basic forms of barriers:
-  Barrier: block until all other threads arrive

 upc_barrier
-  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  UPC also has locks for protecting shared data:
-  Locks are an opaque type (details hidden):

upc_lock_t *upc_global_lock_alloc(void);

-  Critical region protected by lock/unlock:
void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region

Pi in UPC: Shared Memory Style
• Like pthreads, but use shared accesses judiciously
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

other private variables

one shared scalar variable

Pi in UPC: Data Parallel Style w/ Collectives
• The previous version of Pi works, but is not scalable:

- On a large # of threads, the locked region will be a bottleneck
• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

Shared Arrays Are Cyclic By Default
• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
- Blue elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

Pi in UPC: Shared Array Version
• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

Global Memory Allocation
shared void *upc_alloc(size_t nbytes);

 nbytes : size of memory in bytes
•  Non-collective: called by one thread
•  The calling thread allocates a contiguous memory space in the shared

space with affinity to itself.
 shared [] double [n] p2 = upc_alloc(n&sizeof(double);

void upc_free(shared void *ptr);
•  Non-collective function; frees the dynamically allocated shared

memory pointed to by ptr

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private

Thread0 Thread1 Threadn

p2:

 n doubles

p2:

 n doubles

p2:

 n doubles

Distributed Arrays Directory Style
• Many UPC programs avoid the UPC style arrays in

factor of directories of objects
typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

UPC Compiler Implementation

UPC-to-C translator

•  Pros: portable, can use any
backend C compiler

•  Cons: may lose program
information between the two
compilation phases

•  Example: Berkeley UPC

UPC-to-object-code compiler

•  Pros: better for implementing
UPC specific optimizations

•  Cons: less portable
•  Example: GCC UPC and

most vendor UPC compilers

UPC code

UPC source-to-source
translator

C code

UPC code

UPC source-to-object-
code complier

Machine Instr.

New in UPC 1.3 Non-blocking Bulk Operations

#include<upc_nb.h>00
0
upc_handle_t0h0=00
upc_memcpy_nb(shared0void0*0restrict0dst,00
00000000000000shared0const0void0*0restrict0src,0
00000000000000size_t0n);0
void0upc_sync(upc_handle_t0h);00000000//0blocking0wait0
int0upc_sync_attempt(upc_handle_t0h);0//0nonDblocking00
0
0
0

Important for performance:
•  Communication overlap with computation
•  Communication overlap with communication (pipelining)
•  Low overhead communication

One-Sided in GASNet

•  A one-sided put/get message can be handled directly by a network
interface with RDMA support
- Avoid interrupting the CPU or storing data from CPU (preposts)

•  A two-sided messages needs to be matched with a receive to
identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

Why Should You Care about PGAS?

0

5

10

15

20

25

30

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

La
te

nc
y

(u
s)

Size (bytes)

Latency between 2 Xeon Phi’s via
Infiniband

MPI_Send/Recv (Intel MPI)

upc_memput

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

16
38

4
32

76
8

La
te

nc
y

(u
s)

Size of Messages (bytes)

Latency between 2 Intel IvyBridge
nodes on NERSC Edison (Cray XC30)

MPI_Send/Recv
upc_memput

b
e
t
t
e
r

23"

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 32 128 512 2048 8192 32768 131072 524288 2097152

B
an

dw
id

th
 (M

B
/s

)

Msg. size

Berkeley UPC

Cray UPC

Cray MPI

Bandwidths on Cray XE6 (Hopper)

0

2

4

6

8

10

12

UPC/MPI

Cray XE6 Application Performance

ep ft is lu mg sp bt Harmonic mean
-10%

0%

10%

20%

30%

40%

200%

250%

P
er

ce
nt

ag
e

U
P

C
 o

ve
r

M
P

I s
pe

ed
up

 64 procs
 256 procs

Machine Challenge #3: Bisection Bandwidth

DEGAS Overview"

•  Avoid congestion at node interface: allow all cores to communicate
•  Avoid congestion inside global network: spread communication

over longer time period (start early, send often)
•  Synchronize only when needed: sometimes fine-grained,

sometimes one global barrier (after all incoming counts are
reached) is best

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best NAS Fortran/MPI
Best MPI (always Slabs)
Best UPC (always Pencils)

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

How to program - Hybrid Ideal Case!

In
te

rc
on

ne
ct

MSGsMSGs
Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

Node 0 Node 1

⌅ Pros:
I Expose architectural sharing (one name space) - Memory

e�cient

⌅ Could we achieve optimal performance? Could we
communicate in a parallel region?

I Less application synchronization, but rarely used!

7 / 34

Application Challenge: Fast All-to-All

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea!

chunk = all rows with same destination

pencil = 1 row

•  Three approaches:
• Chunk:

•  Wait for 2nd dim FFTs to finish
•  Minimize # messages

• Slab:
•  Wait for chunk of rows destined for 1

proc to finish
•  Overlap with computation

• Pencil:
•  Send each row as it completes
•  Maximize overlap and
•  Match natural layout

slab = all rows in a single plane with
same destination

FFT Performance on BlueGene/P

•  UPC implementation
outperforms MPI

•  Both use highly
optimized FFT library
on each node

•  UPC version avoids
send/receive
synchronization
•  Lower overhead
•  Better overlap
•  Better bisection

bandwidth
0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

UPC 1.3 Atomic Operations

• More efficient than using locks when applicable

• Hardware support for atomic operations are available, but

upc_lock();0
update();0
upc_unlock();0

atomic_update();0vs

Memory

CPU

GPU

NIC

Memory

Atomic_CAS on uint64_t

Atomic_Add on double

Only support limited operations
on a subset of data types. e.g.,

Atomic ops from different
processors may not be
atomic to each other

• Expand the class of Exascale applications to those involving
random access to large “shared” memory
- Hash tables
- Graph algorithms

• Problems that currently “require” shared memory
• Genome assembly example

Application Challenge: Random Access to Large Memory

GAT ATC TCT CTG TGA
AAC

ACC

CCG

AAT

ATG

TGC

Contig 1: GATCTGA

Contig 2:
AACCG

Contig 3:
AATGC

“Big Data” problems?

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time

HUMAN WHEAT

Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, Lenny
Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, SC’15

.""

 HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS
•  Remote Atomics, Dynamic Aggregation
•  Software Caching (sometimes)
•  Clever algorithms (bloom filters, locality-aware hashing)

DEGAS is a DOE-funded X-Stack with Lawrence Berkeley
National Lab, Rice Univ., UC Berkeley, and UT Austin.

Led by Yili Zheng (LBNL)
with Amir Kamil (U Mich)

And host of others: Paul Hargrove,
Dan Bonachea, John Bachan,

p0" p1" p2"

UPC++: PGAS with “Mixins”

•  Default execution model is SPMD, but

DEGAS

•  UPC++ uses templates (no compiler
needed)
!shared_var<int>!s;!!
!global_ptr<LLNode> g;
!shared_array<int>!sa(8);!

s: 16

g:

x: 5
y:

x: 7
y: 0

sa:

 18 63 27

•  Remote methods, async
!!async(place)!(Function!f,!T1!arg1,…);!
!!wait();!!!!!//!other!side!does!poll();!

•  Interoperability is key; UPC++ can be use with OpenMP or MPI

•  Research in teams for
hierarchical algorithms and
machines

!!!!teamsplit!(team)!{!...!}!
!

UPC++ Performance Close to UPC "

Difference between UPC++ and
UPC is about 0.2 µs (~220 cycles)

0.00

0.01

0.10

1.00

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

Giga Updates Per Second

UPC++
UPC

0.00

0.00

0.01

0.10

1.00

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

G
U

PS

Num. of Processes

Giga Updates Per Second

UPC++
UPC

MIC BlueGene/Q
GUPS (fine-grained) Performance on MIC and BlueGene/Q

Locality Control On-Node is Important

Optimizations:
• Blocked vs. cyclic (default) array layout
• Use private pointer to the thread block in shared array

 double* my_x = (double*)(x + MYTHREAD * BSIZE)!

Bulk Communication with One-Sided Data Transfers

//0Copy0count0elements0of0T0from0src0to0dst0
upcxx::copy<T>(global_ptr<T>0src,00000000000000000000000000
000000000000000global_ptr<T>0dst,00

000000000000size_t0count);0
0

//0NonDblocking0version0of0copy0
upcxx::async_copy<T>(global_ptr<T>0src,0

000000000000000000global_ptr<T>0dst,00
000000000000000000size_t0count);0
0

//0Synchronize0all0previous0asyncs0
upcxx::async_wait();0

Similar to upc_memcpy_nb extension in UPC 1.3
36"

Dynamic Global Memory Management

• Global address space pointers (pointer-to-shared)
global_ptr<data_type>0ptr;0
0

• Dynamic shared memory allocation
global_ptr<T>0allocate<T>(uint32_t0where,0
00000000000000000000000000size_t0count);0
void0deallocate(global_ptr<T>0ptr);0
0
Example: allocate space for 512 integers on rank 2
global_ptr<int>0p0=0allocate<int>(2,0512);0

Remote memory allocation is not
available in MPI-3, UPC or SHMEM.

37"

Async Task Example

#include0<upcxx.h>0
0
void0print_num(int0num)0
{00
00printf(“myid0%u,0arg:0%d\n”,0MYTHREAD,0num);00
}0
0
int0main(int0argc,0char0**argv)0
{00
00for0(int0i0=00;0i0<0upcxx::ranks();0i++)0{0
0000upcxx::async(i)(print_num,!123);!!
!!}0
00upcxx::async_wait();!//0wait0for0all0remote0tasks0to0complete0
00return00;0
}0

38"

Async with C++11 Lambda Function

for0(int0i0=00;0i0<0upcxx::ranks();0i++)0{0
00//0spawn0a0task0expressed0by0a0lambda0function0
00upcxx::async(i)([]0(int0num)00
000000000000000000{0printf("num:0%d\n”,0num);0},00
0000000000000000001000+i);0//0argument0to0the0λ0function0
}0
upcxx::async_wait();0//0wait0for0all0tasks0to0finish0

mpirun –n 4 ./test_async!
!
Output: !
num: 1000 !
num: 1001 !
num: 1002 !
num: 1003 !

Function arguments and lambda-
captured values must be
std::is_trivially_copyable.

39"

Application Challenge: Data Fusion in UPC++

40"

(A) (B) (C)

Re
la

tiv
e

Pa
ra

lle
l

Effi
ci

en
cy

 (%
)

Nm = 1.1e5
Nm = 2.2e5
Nm = 8.2e5

4 16 64 254 1024
NUMA Domains

95

90

85

80

75

100

16 64 254 1024
NUMA Domains (64 updates each)

UPC++
MPI-3 RMA

Ti
m

e
to

 so
lu

tio
n

(s
)

4e3

3e3

2e3

1e3

0
16 64 254 1024

NUMA Domains (64 updates each)

other

binning
upcxx::allocate
upcxx::copy

250

200

150

100

50

0

Ti
m

e
in

 c
m

::u
pd

at
e

(s
)

1000 km

Deep
mantle

Ocean
floor

North

low-velocity
fingers

low-velocity
conduits

Hotspot volcanic islands

(A) Model SEMum2 (Central Pacific view)

(B) Preliminary whole-mantle model

Hawaii
Samoa

+2%

+1%

0%

-1%

-2%

sh
ea

r-
ve

lo
ci

ty
an

om
al

y
(d

ln
Vs

)

2891 kmLower mantle

Transition zone
Upper mantle

Pacific
LLSVP

Core-mantle
boundary Line of section, viewed

from the core-mantle
boundary

•  Seismic modeling for energy applications
“fuses” observational data into simulation

•  With UPC++, can solve larger problems

Cores: 48 192 768 3K 12K

Distributed Matrix Assembly
•  Remote asyncs with user-

controlled resource management
•  Remote memory allocation
•  Team idea to divide threads into

injectors / updaters
•  6x faster than MPI 3.0 on 1K nodes
! Improving UPC++ team support

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle global tomographic model
using numerical seismic wavefield computations (F & R, 2014, GJI, extending F et al., 2013, Science). See F et al,
IPDPS 2015 for parallelization overview.

Note
scale:
>85%
efficie
nt in
worst
case

March 5, 2004"

Multidimensional Arrays in UPC++ (and Titanium)

• Titanium arrays have a rich set of operations

• None of these modify the original array, they just create
another view of the data in that array

• You create arrays with a RectDomain and get it back
later using A.domain() for array A
- A Domain is a set of points in space
- A RectDomain is a rectangular one

• Operations on Domains include +, -, * (union, different
intersection)

translate restrict slice (n dim to n-1)

Arrays in a Global Address Space for AMR

• Key features of UPC++ arrays
- Generality: indices may start/end and any point
- Domain calculus allow for slicing, subarray, transpose and

other operations without data copies
• Use domain calculus to iterate over interior:
 foreach (idx, gridB.shrink(1).domain())
• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

�restricted� (non-
ghost) cells

ghost
cells

intersection (copied
area)

UPC++ arrays based on Titanium Arrays!

Useful in grid
computations
including AMR

Mini-GMG in UPC++ uses high level array library
for Productivity and Performance

43"DEGAS

•  “Fine-grained” like OpenMP
•  “Bulk” like MPI with 1-sided

communication;
•  “Array” version uses multi-

dimensional array constructs for
productivity and ~MPI performance

•  Future runtime optimizations
should close Array/Bulk gap

“MG V-cycle”

Stride
N2

Stride
N

Stride N2

UPC++ arrays are convenient and optimize
strided data accesses automatically

miniGMG"proxy"for"Mul0grid"
solver"in"combus0on,"etc.""

0

5

10

15

20

25

1 8 64 512 4096

So
lv

e
Ti

m
e

(s
)

cores

miniGMG Weak Scaling on Edison (Cray XC30)

MPI

Bulk

Fine-grained

Array

Bulk performance
matches MPI 6 48 384 3K 25K

NWChem on GASNet

• Production chemistry code

- 60K downloads world wide

- 200-250 scientific application
publications per year

- Over 6M LoC, 25K files

44"

Performance Analysis and Optimizations of NWChem

• High-performance
computational chemistry code
✴ Flagship DOE chemistry software
✴ Developed at PNNL, LBL

• 60K downloads world wide

• 200-250 scientific application
publications per year

• Over 6M LoC, 25K files

• Internal tasking model, memory
management, and application
checkpoint/restart.

• Execution on 100K+ processors

2

NWChem

credit:nwchem-sw.org

Software Stack

global arrays

NWChem

armci

MPI + {portals, ofa, dmapp}

gasnet

global arrays

NWChem

armci

vector strided

heaps

NWChem was written in the early 1990s, has 25k files and 6m

lines of fortran. It contains its own internal tasking model, memory

management, and application checkpoint/restart.

2

500

1000

1500

2000

2500

3000

0 512 1024 1536 2048

W
al

l c
lo

ck
 ti

m
e

(S
ec

)

Cores

GA over GASNET

GA base version

G
o
o
d

•  New version on GASNet for
–  Improved performance
–  Portability with other PGAS

Application Challenge: Dynamic Load Balancing

• Static: Equal size tasks

• Semi-Static: Tasks have

different but estimable times

• Dynamic: Times are not

known until mid-execution

Dynamic (on-the-fly) useful when:

45"

…

…

…

 Load imbalance penalty > communication to balance
Load balancing can’t solve lack of parallelism

Regular meshes, dense
matrices, direct n-body

Adaptive and unstructured
meshes, sparse matrices, tree-
based n-body, particle-mesh
methods

Search (UTS), irregular
boundaries, subgrid physics,
unpredictable machines

•  Dynamic tasking option in UPC++
- Demonstrated with library version

of Habanero
- Combines with remote async

! Dynamic load balancing library for
domain-specific runtime in UPC++

Application Challenge: Dynamic Load Balance

46" DEGAS Overview"

Private address space

Global address space

Multi-threading

Local
task
queue

Function shipping across nodes Multidimensional
arrays

void finish_spmd(std::function <void()>
lambda) {

// Start finish scope
allocate_finish_object ();
// Execute the lambda containing
// asynchronous tasks.
lambda ();
// Loop until no more pending tasks
// at global scope (both local and
// remote)
while(true) {

// Pop and execute tasks from out_deque
while(true) {

void* task = pop_out_deque ();
if(task == NULL) break;
else {

// Execute lambda function in the task.
// This lambda contains UPC ++ calls ,
// details in Figure 7 and 8.
async_wrapper(lambda); // see Figure 6

} // end else
} // end while

// Send and receive remote tasks in
// UPC ++ queue
void* incoming_remoteTask = advance_upcxx ();
if(incoming_remoteTask != NULL) {

// Wrap it as local async which will
// push this task to in_deque
async ([=]() {

// Call UPC ++ library to execute this task.
execute_upcxx(incoming_remoteTask);

}); // end async
} // end if
tasks_count = incoming_tasks - (outgoing_tasks

+ total_local_pending_tasks);
// Find total global pending tasks
allreduce (& tasks_count ,

&global_tasks_count , SUM);
if(global_tasks_count ==0) break;

} // end while
// end finish scope
free_finish_object ();

} // end finish_spmd

Figure 10: Runtime implementation of finish_spmd

 0.0001

 0.001

 0.01

 0.1

 1

1 4 8 12 24 48 96 192
300

512

P
e
rf

o
rm

a
n
ce

 (
T

B
/s

e
c)

HabaneroUPC++ Places

1 worker/place

4 worker/place

8 worker/place

12 worker/place

(a) SampleSort

 100

 1000

 10000

 100000

 1e+06

1 8 64 216 512

P
e
rf

o
rm

a
n
ce

 (
F

O
M

 z
/s

e
c)

HabaneroUPC++ Places

1 worker/place

4 worker/place

8 worker/place

12 worker/place

(b) L U L ESH (number of total place required to be a perfect
cube by application)

Figure 11: Weak scaling performance using HabaneroUPC++
and varying number of work-stealing worker threads per
place.

 0.001

 0.01

 0.1

 1

12 48 96 144
288

576
1152

2304
3600

6144

P
e
rf

o
rm

a
n
ce

 (
T

B
/s

e
c)

Total cores

UPC++ HabaneroUPC++

(a) SampleSort

 100

 1000

 10000

 100000

 1e+06

1 8 64 216 512
P

e
rf

o
rm

a
n
ce

 (
F

O
M

 z
/s

e
c)

Total cores

UPC++ HabaneroUPC++

(b) L U L ESH

Figure 12: Performance comparison of HabaneroUPC++ with
UPC++.

Beyond Put/Get: Event-Driven Execution

• DAG Scheduling in a distributed (partitioned) memory context
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

- Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

- Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

Uses a Berkeley extension to
UPC to remotely synchronize

47"

Example: Building A Task Graph

using namespace upcxx;
event e1, e2, e3;

t1

e1

t2

t4 t3

t5

e3

e2

t6

async(P1, &e1)(task1);
async(P2, &e1)(task2);
async_after(P3, &e1, &e2)(task3);
async(P4, &e2)(task4);
async_after(P5, &e2, &e3)(task5);
async_after(P6, &e2, &e3)(task6);
async_wait(); // all tasks will be done

48"

One-sided communication works everywhere

Support for one-sided communication (DMA) appears in:
•  Fast one-sided network communication (RDMA, Remote

DMA)
•  Move data to/from accelerators
•  Move data to/from I/O system (Flash, disks,..)
•  Movement of data in/out of local-store (scratchpad) memory

PGAS programming model

 *p1 = *p2 + 1;
 A[i] = B[i];

 upc_memput(A,B,64);

It is implemented using one-sided
communication: put/get

Single Program Multiple Data
(SPMD) is too restrictive

Hierarchical machines and Applications

• Option 1: Dynamic parallelism creation
- Recursively divide until… you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

• Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++)
- Hardware threads can be grouped into units hierarchically
- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

0" 3"1" 2"

4"

5"

6"

7"

0"

1"

2"

3"

•  Hierarchical memory
model may be necessary
(what to expose vs hide)

•  Two approaches to
supporting the
hierarchical control

Summary

• UPC is a mature language with multiple implementations
- Cray compiler
- gcc version of UPC: http://www.gccupc.org/
- Berkeley compiler: http://upc.lbl.gov

•  Language specification and other documents
https://code.google.com/p/upc-specification
https://upc-lang.org

• UPC++
- Newer “language” under development
- Adds dynamic parallelism on top of SPMD default
- Powerful Multi-D arrays
- Hierarchical parallelism mapped to machine

LBNL / UCB Collaborators
•  Yili Zheng
•  Amir Kamil*
•  Paul Hargrove
•  Eric Roman
•  Dan Bonachea*
•  Khaled Ibrahim
•  Costin Iancu
•  Michael Driscoll
•  Evangelos Georganas
•  Penporn Koanantakool
•  Steven Hofmeyr*
•  Leonid Oliker
•  John Shalf

External collaborators (& their teams!)
•  Vivek Sarkar, Rice
•  John Mellor-Crummey, Rice
•  Mattan Erez, UT Austin

•  Erich Strohmaier
•  Samuel Williams
•  Cy Chan
•  Didem Unat*
•  James Demmel
•  Scott French
•  Edgar Solomonik*
•  Eric Hoffman*
•  Wibe de Jong

Thanks!

* Former LBNL/UCB

